Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sports (Basel) ; 10(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36355825

RESUMO

Speed strength performances are substantially dependent on maximum strength. Due to their importance, various methods have been utilized to measure maximum strength (e.g., isometric or dynamic) with discussed differences regarding transferability to sport-specific movements dependent upon the testing procedure. The aim of this study was to analyze whether maximum isometric force (MIF) during isometric back squats correlates with maximum strength measurements of the one repetition maximum (1RM) in the squat, with countermovement jump (CMJ) performance, and with drop jump (DJ) performances in elite youth soccer players (n = 16, 18.4 ± 1.5 [range: 17-23] years old). Additionally, concordance correlation coefficients (CCC, [ρc]) between isometric and dynamic measurements were calculated to verify whether one measurement can actually reproduce the results of the other. To improve comprehension, differences between isometric and dynamic testing values were illustrated by providing differences between both testing conditions. For this, the mean absolute error (MAE) and the mean absolute percentage error (MAPE) were calculated. To reach equality in scale, the 1RM measures were multiplicated by 9.81 to obtain a value of N. The 1RM demonstrated correlations of τ = |0.38| to |0.52| with SJ and CMJ performances, while MIF demonstrated correlations of τ = |0.21| to |0.32|. However, the correlations of both 1RM and MIF with the DJ reactive strength index (RSI = jump height /contact time) from different falling heights were of no statistical significance. The data showed significant correlations between both the absolute (τ = |0.54|) and the relative (τ = |0.40|) performances of 1RM and MIF, which were confirmed by CCC of ρc= |0.56| to |0.66|, respectively. Furthermore, the MAE and MAPE showed values of 2080.87 N and 67.4%, respectively. The data in this study show that, despite good correlations, there is no exact coincidence between isometric and dynamic strength measurements. Accordingly, both measurements may only represent an estimation of maximal strength capacity and cannot be substituted for each other. Therefore, maximal strength should be tested by using high similarity in the contraction condition, as it is used in the training process to counteract underestimation in strength because of unfamiliarity with the testing condition.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36293831

RESUMO

Many sports injuries result in surgery and prolonged periods of immobilization, which may lead to significant atrophy accompanied by loss of maximal strength and range of motion and, therefore, a weak-leg/strong-leg ratio (as an imbalance index ∆ ) lower than 1. Consequently, there are common rehabilitation programs that aim to enhance maximal strength, muscle thickness and flexibility; however, the literature demonstrates existing strength imbalances after weeks of rehabilitation. Since no study has previously been conducted to investigate the effects of long-duration static stretch training to treat muscular imbalances, the present research aims to determine the possibility of counteracting imbalances in maximal strength and range of motion. Thirty-nine athletic participants with significant calf muscle imbalances in maximal strength and range of motion were divided into an intervention group (one-hour daily plantar flexors static stretching of the weaker leg for six weeks) and a control group to evaluate the effects on maximal strength and range of motion with extended and bent knee joint. Results show significant increases in maximal strength (d = 0.84-1.61, p < 0.001-0.005) and range of motion (d = 0.92-1.49, p < 0.001-0.002) following six weeks of static stretching. Group * time effects (p < 0.001-0.004, η² = 0.22-0.55) revealed ∆ changes in the intervention group from 0.87 to 1.03 for maximal strength and from 0.92 to 1.11 in range of motion. The results provide evidence for the use of six weeks of daily, one hour stretching to counteract muscular imbalances. Related research in clinical settings after surgery is suggested.


Assuntos
Exercícios de Alongamento Muscular , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular/fisiologia , Perna (Membro)/fisiologia , Articulação do Joelho/fisiologia , Força Muscular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...